Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.368
Filtrar
1.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
2.
Int J Nanomedicine ; 19: 3123-3142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585474

RESUMO

Purpose: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.


Assuntos
Células Endoteliais , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Células Endoteliais/metabolismo , Endotélio , Perfilação da Expressão Gênica , Colágeno/metabolismo , Estresse Mecânico , Células Cultivadas
3.
Arch. Soc. Esp. Oftalmol ; 99(4): 152-157, abr. 2024. ilus
Artigo em Espanhol | IBECS | ID: ibc-232135

RESUMO

Introducción: Las queratoplastias lamelares han supuesto un gran impacto en el manejo del edema corneal por disfunción endotelial. Las técnicas de trasplante mínimamente invasivo como la Descemet Membrane Endothelial Keratoplasty (DMEK) han permitido reducir la morbilidad que suponía la realización de una queratoplastia penetrante en este tipo de pacientes. Aun así, se trata de técnicas complejas que no están exentas de complicaciones, y que requieren una larga línea de aprendizaje quirúrgico y una aún más exigente experiencia en el manejo postoperatorio.Caso clínicoUna mujer de 89 años afecta de distrofia endotelial de Fuchs e intervenida de cirugía combinada de catarata y DMEK, presentó a las 24h de la intervención un edema estromal de predominio inferior y un despegamiento sectorial del injerto. Tras un re-bubbling en consultas y 4 días más tarde, se observó el injerto enrollado y libre en cámara anterior.Se intervino de re-DMEK con preservación del injerto original tras 24h, con desepitelización para optimizar la visualización. Se tiñó el injerto con azul tripán y se protegió el estroma posterior con aire. Se reimplantó el injerto bajo maniobras intraoculares y con burbuja de aire.A las 24h de la cirugía se observó el injerto adherido, con una gran disminución del edema estromal. Un mes después, la paciente presentaba una córnea transparente, una persistente adhesión completa del injerto y una agudeza visual de 0,9.ConclusiónEl hallazgo del free roll en cámara anterior tras cirugía de DMEK constituye la forma más compleja de despegamiento del injerto. El edema corneal, así como la disposición de las diferentes estructuras intraoculares son condicionantes a tener en cuenta para la resolución quirúrgica de esta complicación. En muchos casos el reposicionamiento quirúrgico del injerto es factible, hecho que implica ahorrar costes sin necesidad de utilizar nuevos tejidos corneales donantes. (AU)


Introduction: Lamellar keratoplasties have had a great impact in the management of corneal edema due to endothelial dysfunction. Minimally invasive transplant techniques such as descemet membrane endothelial keratoplasty (DMEK) have helped to reduce the morbidity involved in performing penetrating keratoplasty in this type of patient. Even so, these are complex techniques that are not free of complications and require a long line of surgical learning and an even more demanding experience in postoperative management.Clinical caseAn 89-year-old woman suffering from Fuchs endothelial dystrophy and undergoing combined cataract and DMEK surgery presented stromal edema predominantly inferior and sectoral detachment of the graft 24h after the intervention. After re-bubbling in consultations and 4 days later, the graft was observed rolled and free in the anterior chamber.She underwent re-DMEK with preservation of the original graft after 24h, with de-epithelialization to optimize visualization. The graft was stained with trypan blue and the posterior stroma was protected with air. The graft was reimplanted under intraocular maneuvers and with an air bubble.Twenty four hours after surgery, the adhered graft was observed, with a great decrease in stromal edema. One month later, the patient had a clear cornea, persistent complete graft adhesion, and visual acuity of 0.9.ConclusionThe discovery of free roll in the anterior chamber after DMEK surgery constitutes the most complex form of graft detachment. Corneal edema as well as the arrangement of the different intraocular structures are conditions to be considered for the surgical resolution of this complication. In many cases, surgical repositioning of the graft is feasible, which means saving costs without the need to use new donor corneal tissues. (AU)


Assuntos
Humanos , Feminino , Idoso de 80 Anos ou mais , Transplante , Endotélio , Oftalmologia , Transplante de Córnea , Morbidade
4.
Respir Res ; 25(1): 172, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637760

RESUMO

The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Humanos , Pulmão/metabolismo , Traumatismo por Reperfusão/patologia , Endotélio/metabolismo , Endotélio/patologia , Lesão Pulmonar/metabolismo
5.
BMC Cardiovasc Disord ; 24(1): 209, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627625

RESUMO

AIMS: Regular transient limb ischemia (RTLI) can prevent atherosclerosis (AS) progression in hypercholesterolemic rabbits. This study aimed to investigate the minimum effective intensity and possible mechanisms of RTLI for preventing atherosclerosis. METHODS: Eighty rabbits were divided into eight groups: normal (N), high cholesterol (H), three RTLI [three RTLI cycles every other day (R3qod), three RTLI cycles daily (R3qd), and six RTLI cycles daily (R6qd), each cycle of RTLI included 5 min of limb ischemia followed by 5 min limb reperfusion], and three correlated sham RTLI [sham ischemia for 30 min once every other day (S3qod), sham ischemia for 30 min once daily (S3qd), and sham ischemia for 60 min once daily (S6qd)]. Rabbits in group N were kept normally, while the others were fed 1% cholesterol diet for 12 weeks. The RTLI and sham RTLI groups were received RTLI or sham RTLI procedure, respectively. The plaque area in the thoracic aorta was determined by oil red O staining, and quantifying the ratio of plaque area to intimal area (PA/IA). Endothelium-dependent and -independent relaxation were also determined. Endothelial cell were isolated from abdominal aorta of rabbits, and the apoptosis ratio was detected using flow cytometry. RESULTS: The PA/IA and early apoptotic cell ratio was significantly lower as well as the endothelium-dependent relaxation response was higher in group R6qd than those in groups H and S6qd, while those in the R3qod group was not significantly different from those in groups H and S3qod, as well as those in the R3qd group showed no significant difference compared to those in groups H and S3qd. CONCLUSIONS: Six cycles of RTLI daily was the optimal effective intensity to prevent AS progression in rabbits. Endothelial function improvement and apoptosis inhibition might contribute to the anti-AS effects.


Assuntos
Aterosclerose , Animais , Coelhos , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Colesterol/metabolismo , Apoptose , Isquemia/prevenção & controle , Células Endoteliais , Endotélio , Endotélio Vascular/metabolismo
6.
Cardiovasc Diabetol ; 23(1): 122, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580969

RESUMO

BACKGROUND: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS: We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS: Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS: EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Camundongos , Animais , Humanos , Histonas , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metilação , Diabetes Mellitus/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Endotélio , Glucose/toxicidade , Glucose/metabolismo
7.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474581

RESUMO

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Assuntos
Traumatismo por Reperfusão Miocárdica , Thymelaeaceae , Ratos , Animais , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Endotélio/metabolismo , Thymelaeaceae/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Nutrients ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474873

RESUMO

Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.


Assuntos
Angiotensina II , Cálcio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/metabolismo , Cálcio/metabolismo , Taurina/farmacologia , Cardiomegalia/metabolismo , Miócitos Cardíacos , Endotélio/metabolismo
9.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438061

RESUMO

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Assuntos
Infarto do Miocárdio , Ácido Valproico , Coelhos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Antioxidantes , Infarto do Miocárdio/metabolismo , Aorta/metabolismo , Endotélio/metabolismo , Endotélio Vascular/metabolismo
10.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528533

RESUMO

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Assuntos
Nefropatias Diabéticas , NF-kappa B , Receptores de Interleucina-8B , Animais , Humanos , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Glucose , Glicocálix/metabolismo , Inflamação/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Quimiocinas/uso terapêutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo
11.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461872

RESUMO

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Endotélio/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo
12.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456287

RESUMO

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Proteínas Nogo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Endotélio/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E
13.
Part Fibre Toxicol ; 21(1): 15, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468337

RESUMO

BACKGROUND: Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS: An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS: Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS: Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.


Assuntos
Células Endoteliais , Emissões de Veículos , Emissões de Veículos/toxicidade , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-8/metabolismo , Endotélio , Material Particulado/toxicidade
14.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474396

RESUMO

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/patologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/metabolismo , Hibridização in Situ Fluorescente , Peptidil Dipeptidase A/metabolismo , Pulmão/metabolismo , Trombose/patologia , Endotélio/metabolismo , Homeostase
15.
Commun Biol ; 7(1): 338, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499610

RESUMO

Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Camundongos , Animais , Células Endoteliais/metabolismo , AVC Isquêmico/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Endotélio/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437534

RESUMO

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Animais , Humanos , Camundongos , Atrofia , Células Endoteliais , Endotélio , Peroxirredoxinas
17.
ACS Nano ; 18(11): 8107-8124, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442075

RESUMO

Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Células Endoteliais , Infarto do Miocárdio/tratamento farmacológico , Endotélio , Anti-Inflamatórios/uso terapêutico
18.
Commun Biol ; 7(1): 315, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480819

RESUMO

Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone formation in part by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered trabecular and cortical bone formation. SMAD1/5 depletion induced excessive sprouting and disrupting the morphology of the metaphyseal vessels, with impaired anastomotic loop formation at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long-term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops and elevated vascular permeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics in juvenile mouse bone.


Assuntos
60489 , Osteogênese , Camundongos , Animais , Transdução de Sinais , Osso e Ossos , Endotélio
19.
Lab Chip ; 24(7): 2094-2106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38444329

RESUMO

Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood-brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled.


Assuntos
Técnicas de Cultura de Células , Hidrogéis , Animais , Hidrogéis/química , Endotélio , Matriz Extracelular/química , Dispositivos Lab-On-A-Chip
20.
Front Immunol ; 15: 1281263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487535

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Due to its high infectivity, the pandemic has rapidly spread and become a global health crisis. Emerging evidence indicates that endothelial dysfunction may play a central role in the multiorgan injuries associated with COVID-19. Therefore, there is an urgent need to discover and validate novel therapeutic strategies targeting endothelial cells. PIEZO1, a mechanosensitive (MS) ion channel highly expressed in the blood vessels of various tissues, has garnered increasing attention for its potential involvement in the regulation of inflammation, thrombosis, and endothelial integrity. This review aims to provide a novel perspective on the potential role of PIEZO1 as a promising target for mitigating COVID-19-associated endothelial dysfunction.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Células Endoteliais , Inflamação , Endotélio , Canais Iônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...